THE TOPIC: HCI AND SECURITY SYSTEMS

The human factor is often described as the weakest part of a security system and users are often described as the weakest link in the security chain. This workshop will seek to understand the roles and demands placed on users of security systems, and explore design solutions that can assist in making security systems usable and effective. In addition to examining end-users, this workshop will also examine the issues faced by security system developers and operators. The primary motivation for the workshop is that previous research on HCI and Security (HCISEC) has been scattered in different conferences and journals, and information sharing has been difficult. The goal of the workshop is to build a more cohesive and active HCISEC community of researchers and practitioners. This will be done by building a network of interested people, sharing research activities and results, discussing high priority areas for research and development, and exploring opportunities for collaboration.

Recent history in the USA and around the world has increased the apparent importance of security systems, both physical and electronic. A number of initiatives and responses have emerged ranging from new security systems and devices to large-scale national identification and security programs. Little attention has been paid, however, to the issue of whether such systems will be usable and effective. HCI researchers and practitioners have a lot to offer security system developers, purchasers, and users. This workshop will be an opportunity for these people to come together, share information, and develop relationships.

Scope of the Topic

Security is a large topic so there are many areas where HCI is important. Three obvious areas of interest are authentication (passwords, biometrics, etc.), security operations (intrusion detection, vigilance, policies and practices, etc.), and developing secure systems (developing for security, understanding users, installation and operation support, etc.). Some previous research has been done in each of these areas, but there are many open issues.

Authentication

The most common authentication procedure is for the user to provide a user ID and a shared secret password that they have chosen. Users have been described as the weakest link in security systems because of their behavior when using user ID/password systems. Many studies have shown, for example, that users tend to choose short and/or guessable passwords [1]. Another very common problem is that users forget their passwords. One estimate is that 50 percent of all help desk calls are password related, and most of these are because a password has been forgotten (Murrer, in [3]).

 Probably because of the difficulty remembering, users also have a tendency to write their passwords down. In one study, 50 percent of the users surveyed admitted to writing down their passwords, and the other 50 percent did not answer the question [1]. Other notorious password behaviors are: (1) users share their passwords with their friends and colleagues, (2) users fail to change their passwords on a regular basis even when instructed to, (3) users may choose the same password (or closely related passwords) for multiple systems, and (4) users are often willing to tell their passwords to strangers who asked for them (asking was the most common technique use by Kevin Mitnick in his infamous security exploits [10]).

There is some evidence, for example, that Passfaces are easier to
remember than passwords, especially after long intervals with no use [3].

There has been much interest recently in using biometrics, such as fingerprints or voice patterns, for user identification [5] [9], but these systems can have their own problems. Biometrics can be hard to forge but easy to steal [11]. For example, fingerprints can be lifted from objects and used when the owner is not present. Also, the master file of biometric templates can be compromised so that an intruder could replace a legitimate thumbprint file with their own. If the integrity of a biometric has been compromised (e.g., a thumbprint file has been widely distributed) it makes the biometric system unusable forever. Also, a biometric security network can be compromised by packet sniffing and insertion, where an illegitimate biometrics file is inserted in place of a legitimate one that is being transmitted.

Biometrics systems can be based on physical characteristics, such as fingerprints, or behavioral characteristics, such as voice patterns [7] or typing styles [6]. The performance of behavioral biometrics (in terms of correction rejections and false acceptances) can be affected by circumstances such as health, stress, and other factors. Also, at least one behavioral biometric system, the one based on typing styles, appears to be less acceptable to users, who are afraid that their work performance may be monitored in some way [3].

Security Operations

Human factors problems are not restricted to end-users. System operators are also human and therefore have limitations and the potential to make mistakes. Perhaps the most serious behavioral problem of system operators is poor configuration of the system. This may be due to failure to understand the security technology, and/or failure to activate all of the necessary features. In one study, failures during installation and feature configuration were the most common sources of security problems in the banking and government sectors [2].

System operators of large installations also face the problems encountered in other domains of monitoring and controlling large complex systems. Tools such as distributed firewalls promise to improve security, but configuring, monitoring, and controlling these systems is difficult. Operators would benefit from better interfaces for these systems.

Another problem seen with system operators is poor operating procedures. This includes not keeping the system up-to-date, not responding to security notices, badly managing their own passwords, cost-cutting, and simple laziness. An interesting research area might be an analysis of factors that contribute to inappropriate system operator behaviors. Finally, operator fraud can be a serious problem in situations where security compromises can lead to financial gain [2].

Developing Secure Systems

Developers of secure systems face a serious challenge. If a security system is not user-friendly, developers face failure in the marketplace, or users that circumvent or ignore the security features. Although it often appears that security and usability are contrary product attributes, it need not be that way. For example, Yee [12] has recently laid out ten HCI design principles that can be used to improve the usability of security systems:

- **Path of Least Resistance.** To the greatest extent possible, the natural way to do any task should also be the secure way.
- **Appropriate Boundaries.** The interface should expose, and the system should enforce, distinctions between objects and between actions along boundaries that matter to the user.
- **Explicit Authority.** A user’s authorities must only be provided to other actors as a result of an explicit action that is understood by the user to imply granting.
- **Visibility.** The interface should allow the user to easily review any active authority relationships that would affect security-relevant decisions.
- **Revocability.** The interface should allow the user to easily revoke authorities that the user has granted wherever revocation is possible.
- **Expected Ability.** The interface must not generate the impression that it is possible to do something that cannot actually be done.
- **Trusted Path.** The interface must provide an unspoofable and faithful communication channel between the user and any entity trusted to manipulate authorities on the user’s behalf.
- **Identifiability.** The interface should enforce that distinct objects and distinct actions have unspoofably identifiable and distinguishable representations.
- **Expressiveness.** The interface should provide enough expressive power (a) to describe a safe security policy without undue difficulty; and (b) to allow users to express security policies in terms that fit their goals.
- **Clarity.** The effect of any security-relevant action must be clearly apparent to the user before the action is taken.

In addition, tools are emerging to assist developers when checking for security vulnerabilities. Often the results and implications of the code scans can be complex and difficult to interpret. The field of HCI can likely contribute to improvement of security-enhancing development tools.

Another development issue is design philosophy. Especially in the realm of Web applications and services, design typically proceeds from the bottom up, driven by well established Web application design patterns and the constraints imposed by underlying technologies, such as public key cryptography. However, it is often difficult to retrofit these design patterns with acceptable security architectures. An alternative approach begins with a user-centered analysis of workflow and information flow (with
emphasis on the boundaries), followed by a design approach that is driven from the top, taking care to use well established security models to enforce access control and data separation where appropriate.

FORMAT OF THE WORKSHOP

Participation Solicitation and Selection
The goal is to bring together researchers and practitioners to facilitate information sharing and collaboration. We will solicit participation from people known to be interested in the HCISEC field, and advertise more widely (e.g., the Development Consortium, various security fora). Papers will be selected by the workshop organizers based on the contribution to the goals of the workshop, the shared interests of the other participants, promoting diversity and variety in topics and approaches, and likelihood to promote discussion and collaboration.

Method of Interaction – 1 Day Workshop
This workshop will include brief paper presentations, group discussion about the papers to identify key points, breakout sessions, reports from breakout groups, and a final group discussion and follow-up planning session. A summary of the workshop will be prepared as a poster for display during the conference. Participants will also have the option of a group dinner at the end of the day to encourage further networking and discussion.

Schedule for the Workshop
9.00-9.15 Introduction and context setting by organizers
9.15-10.15 Introductions, statements of interests, and presentations by attendees (time will be adjusted according to number of attendees)
10.15-10.30 Coffee Break
10.30-11.30 More presentations
11.30-12.30 Discussion of presentations, themes, shared interests
12.30-13.30 Lunch
13.30-13.45 Summarize morning discussions, organize breakout groups
13.45-15.00 Breakout group discussions (topics to be based on themes identified earlier)
15.00-15.45 Breakout group summaries
15.45-16.00 Coffee break
16.00-17.00 Summary, compose poster and report, decide on follow-up opportunities
17.00-17.30 Wrap up and leave.
18:30-22:00 Group dinner

Pre-Workshop Activities
Prior to the workshop we will solicit contributions from practitioners and researchers. From these contributions we will select invited attendees to the workshop. In addition to position paper submissions, we will use an existing HCISEC web site and mailing list (hcisec@yahoogroups.com) to encourage information sharing and discussion. The online discussion site will be the ultimate destination for final workshop papers and the summary reports from the workshop.

Plan for Dissemination
We plan to prepare a summary poster of the workshop for display during the CHI 2003 conference. We also plan to make the papers and summaries arising from the workshop available on the YahooGroups community site and other suitable places.

Fees
Fees will be waived for Andrew Patrick and Chris Long.

Technical Requirements
A LCD projector suitable for connecting to a computer will be required, along with the default equipment available with the room.

ORGANIZERS' BACKGROUNDS
Andrew Patrick is a Senior Scientist at the National Research Council of Canada. He has published articles and conference papers on a variety of HCI topics, including natural language systems, Internet broadcasting, the personal and social impacts of going online, and the human factors of videoconferencing systems. He is currently conducting research on human-computer interface issues for trustworthy software agents and the human factors of security systems. Prior to joining NRC in 2001, Andrew worked at Nortel Networks where he managed research and development groups focused on Voice Over IP (VoIP) quality, and conducted field research to evaluated new product and service concepts. Andrew holds a Ph.D. in Cognitive Psychology from the University of Western Ontario. CHI 2003 will be Andrew's second CHI conference, and the first time he has organized a CHI workshop.

A. Chris Long is a Postdoctoral Research Fellow in the Parallel Data Laboratory at Carnegie Mellon University. He is currently developing user interfaces to allow system administrators to monitor and manage self-secure network interfaces and storage devices. He is also interested in other areas where human-computer interaction and security intersect, such as developing interfaces to help ordinary users manage their electronic security and privacy more easily and effectively. Chris received his Ph.D. in Computer Science from the University of California at Berkeley in 2001. His dissertation focused on a tool for helping designers of pen-based user interfaces create and improve gestures for their interfaces. He has not helped organize a workshop before, but he has been involved with CHI since 1995 as a reviewer, presenter, and author.
Scott Flinn is a Research Officer at the National Research Council of Canada. He has published conference papers in a variety of HCI related areas, including visualization of real time processes, information discovery, and the use of non-speech audio in the interface. Prior to joining NRC in 2002, Scott worked at RSA Security where he was the lead architect for the front-end components of a certificate authority product. That experience highlighted the need for further work in policy configuration and meta-access control, as well as a variety of areas where traditional design techniques for usability and workflow are at odds with security requirements for such things as data segregation and trust management. Scott has not helped organize a workshop before, but has been involved in previous CHI conferences as an attendee and student volunteer.

REFERENCES