NRC · CNRC From Discovery to Innovation... # Communications Psychology: Four Useful Concepts **Andrew Patrick, Ph.D.** Scientist, National Research Council of Canada Adjunct Professor of Psychology, Carleton University http://www.andrewpatrick.ca ### Eoncept 1: Qos versus QoE - developed with Ben Bauer - the term "Quality of Service" (QoS) is used in many ways - the desired service quality ("carrier grade") - the service quality as perceived by the user ("excellent", "acceptable") - the desired quality of data transmission ("gold", "expedited") - the actual quality of data transmission (errors, delay) - various mechanisms to tag data packets for special handling (DiffServ, RSVP, MPLS) # lise equiposal - reserve "QoS" to describe mechanisms for tagging packets - use the term "Quality of Experience" (QoE) to describe the quality as perceived (experienced) by the user – e.g., Web QoE Workgroup - use the term "Grade of Service" to refer to the desired service quality - Goal: make a clear distinction between user quality and network/system quality ## QoE: Quality of Experience # "The characteristics of the sensations, perceptions, and opinions of people as they interact with their environments" - Measure of human experience, not technology - The "touchy-feely" part of technology - Pleasing and enjoyable VERSUS displeasing and frustrating - User satisfaction requires a good experience! http://www.castrovalleyrotary.org/Minutes/February2003/ February25/petting_zoo.jpg ### Characteristics of QoE ### QoE is not QoS - QoS: technical approaches to improve data flow - Diffserv, RSVP, MPLS - QoT: characteristics of the data flow - Throughput, packet loss, latency, jitter - Goal is to maximize QoE - Need to understand QoE to use QoS and QoT effectively - Good QoS ⇒ good QoT ⇒ good QoE ### QoE-drivers are different for different tasks - Task: Streamed audio lecture - Fidelity is most important for QoE - Task: Interactive business meeting - Latency is most important for QoE ### Concept 2: A 10-Layer Model of Interaction • developed with Ben Bauer - OSI defined a 7-layer architecture model: - interaction broken down into a hierarchical set of layers - each layer performs a subset of the functions required - each layer relies on the next lower layer to perform more primitive functions and to conceal the details of those functions - each layer provides services to the next higher layer - changes in one layer do not require changes in the other layers - very useful for partitioning problems and reducing complexity # Lolf of noisneixE #### A 10-Layer Model of Human-Technology Interaction | | Layer | Label | Description | |------------|-------|--------------|---| | | 10 | Human | Provides description of the needs, desires, goals of the | | | | Needs | user during the interaction independent of any method | | | | | or technology. Also addresses business issues: will it | | | | | sell, to whom, where, when. | | HCI Layers | 9 | Human | Provides description of the social, perceptual, cognitive, | | | | Performance | motor etc. aspects of the communications. | | | 8 | Input/Output | Provides description of the human input (keyboard, | | | | | mouse, etc.) and output (display, sound) aspects of the | | | | | interaction. | | | 7 | Application | Provides services to the users of the OSI environment. It | | | | | provides such services as FTP, transaction server, network | | | | | management, etc. | | | 6 | Presentation | Performs generally useful transformations on data to provide a | | | | | standardized application interface and to provide common | | | | | communications services. It provides services such as | | | | | encryption, text compression and reformatting. | | | 5 | Session | Provides the control structure for communication between | | | | | applications. It establishes, manages and terminates | | | 4 | Transport | Provides reliable, transparent transfer of data between end | | | | | points. It provides end-to-end error recovery and flow control. | | OSI Layers | 3 | Network | Provides upper layers with independence from the data | | | | | transmission and switching technologies used to connect | | | | | systems. It is responsible for establishing, maintaining and | | | | | terminating connections. | | | 2 | Data Link | Provides for the reliable transfer of data across the physical | | | | | link. It sends blocks of data (frames) with the necessary | | | | | synchronization, error control and flow control. | | | 1 | Physical | Concerned with transmission of unstructured bit stream over | | | | | the physical link. It invokes such parameters as signal voltage | | | | | swing and bit duration. It deals with the mechanical, electrical, | | | | | procedural characteristics to establish, maintain and | | | | | deactivate | nologies Nov 8, 2004 # New HCI Layers | | | | A CONTRACTOR OF THE | | | | | | |------------|-------|--------------|--|--|--|--|--|--| | | Layer | Label | Description | | | | | | | | 10 | Human | Provides description of the needs, | | | | | | | HCI Layers | | Needs | desires, goals of the user during | | | | | | | | | | the interaction independent of any | | | | | | | | | | method or technology. Also | | | | | | | | | | addresses business issues: will it | | | | | | | | | | sell, to whom, where, when. | | | | | | | | 9 | Human | Provides description of the social, | | | | | | | | | Performance | perceptual, cognitive, motor etc. | | | | | | | | | | aspects of the communications. | | | | | | | | 8 | Input/Output | Provides description of the human | | | | | | | | | | input (keyboard, mouse, etc.) and | | | | | | | | | | output (display, sound) aspects of | | | | | | | | | | the interaction. | | | | | | #### **Notes:** - layer 8 in HCI space is similar to OSI layers 1-2 - applies to IP services but also broadcast TV, VCRs, etc. - illustrates difference between QoS (OSI) and QoE (HCI) # Concept 3: Application Categories Based on QoE Requirements The edges of the boxes define the optimal engineering target zones for each service type. ## Estrogetison Categories ### Technology Limits the Application Space # Concept 4: Dimensions of Experience # Layered Models #### A 10-Layer Model of Human-Technology Interaction | | Layer | Label | Description | | | | | | |------------|-------|----------------------|--|--|--|--|--|--| | | 10 | Human
Needs | Provides description of the needs, desires, goals of the user during the interaction independent of any method or technology. Also addresses business issues: will it sell, to whom, where, when. | | | | | | | HCI Layers | 9 | Human
Performance | Provides description of the social, perceptual, cognitive, motor etc. aspects of the communications. | | | | | | | | 8 | Input/Output | Provides description of the human input (keyboard, mouse, etc.) and output (display, sound) aspects of tinteraction. | | | | | | | | 7 | Application | Provides services to the users of the OSI environment. It provides such services as FTP, transaction server, network management, etc. | | | | | | | | 6 | Presentation | Performs generally useful transformations on data to provide a standardized application interface and to provide common communications services. It provides services such as encryption, text compression and reformatting. | | | | | | | | 5 | Session | Provides the control structure for communication between applications. It establishes, manages and terminates | | | | | | | | 4 | Transport | Provides reliable, transparent transfer of data between end points. It provides end-to-end error recovery and flow control. | | | | | | | OSI Layers | 3 | Network | Provides upper layers with independence from the data transmission and switching technologies used to connect systems. It is responsible for establishing, maintaining and terminating connections. | | | | | | | | 2 | Data Link | Provides for the reliable transfer of data across the physical link. It sends blocks of data (frames) with the necessary synchronization, error control and flow control. | | | | | | | | 1 | Physical | Concerned with transmission of unstructured bit stream over
the physical link. It invokes such parameters as signal voltage
swing and bit duration. It deals with the mechanical, electrical,
procedural characteristics to establish, maintain and
deactivate | | | | | | ### VirisM speed/klast ### The Task/Needs Matrix - Task are rows, needs are columns - Five major task classes - Meetings, collaborative work, education, presence, entertainment - Classes are subdivided as required - e.g., meetings subdivided on size, formality, familiarity - Extensible set of needs - Auditory, visual, AV sync, workspace, presentation... - Each need has a set of characteristics - Audio: latency, fidelity, reliability - Workspace: textual, visual - Needs are ranked in importance for each task - Characteristics are given values that map to service quality # Task/Needs Mairix | | | Requirements | | | | | | | | | |---------------|-----------------------------------|--------------|--------|------------------|------------------|--------------------|-------------|------------------|------------------|-----------| | Category | Task/Scenario | auditory | visual | audio/video sync | shared workspace | presentation space | turn-taking | decision support | privacy controls | meta-comm | | | meeting-large-formal-colleagues | 10 | 9 | 6 | 5 | 7 | 8 | 7 | 4 | 6 | | | meeting-large-formal-strangers | 10 | 9 | 6 | 5 | 7 | 8 | 7 | 6 | 6 | | | meeting-large-informal-colleagues | 10 | 9 | 5 | 5 | 7 | 8 | 7 | 4 | 6 | | Meeting | meeting-large-informal-strangers | 10 | 9 | 6 | 5 | 7 | 8 | 7 | 6 | 6 | | Meeting | meeting-small-formal-colleagues | 10 | 8 | 8 | 9 | 4 | 4 | 3 | | | | | meeting-small-formal-strangers | 10 | 8 | 8 | 9 | 4 | 4 | 3 | | | | | meeting-small-informal-colleagues | 10 | 8 | 8 | 9 | 4 | 4 | 3 | | | | | meeting-small-informal-strangers | 10 | 8 | 8 | 9 | 4 | 4 | 3 | | | | | collab-generate ideas and plans | 10 | 7 | 5 | 9 | 8 | 5 | | | | | Collaborative | collab-choosing | 10 | 8 | 8 | 7 | 7 | 5 | 9 | | | | Work | collab-execute perform | 10 | 8 | 8 | 9 | 5 | 4 | | | | | | collab-negotiate | 10 | 8 | 8 | 7 | 6 | 6 | 8 | | | | Education | edu-oneway-visual | 9 | 10 | 5 | 7 | 9 | 8 | 8 | 2 | 7 | | | edu-oneway-verbal | 9 | 10 | 3 | 8 | 7 | 8 | 8 | 2 | 7 | | | edu-interactive-visual | 10 | 9 | 10 | 7 | 8 | 5 | 2 | 4 | 2 | | | edu-interactive-verbal | 10 | 9 | 8 | 8 | 6 | 5 | 2 | 3 | 2 | | Presence | presence-general | 9 | 10 | 1 | | | | | 8 | 7 | | | presence-remote monitoring | 9 | 10 | 1 | | | | | 8 | 7 | | Entertainment | entertain-visual | 9 | 10 | 7 | | 4 | | | 7 | 8 | | Entertainment | entertain-auditory | 10 | 9 | 1 | | 2 | | | 7 | 8 | ### Lind zzeczk eni oi eagineinl eviiiznez-Zon k ### Four Interrelated Concepts - Quality of Experience (QoE) - HCI Extension to the OSI 7-layer model - Classifying applications based on QoE requirements - Dimensions of Experience